LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER – APRIL 2010

MT 3810 / 3803 - TOPOLOGY

Date & Time: 21/04/2010 / 9:00 - 12:00 Dept. No.

Max. : 100 Marks

•		• `						
1) a) i) Let X be a non-empty set, and let d be a real function of ordered particle X subjects the following two conditions:				ments				
			of <i>X</i> which satisfies the following two conditions: $d(x, y) = 0 \Leftrightarrow x = y$, and $d(x, y) \le d(x, z) + d(y, z)$.					
			Show that d is a metric on X.					
			OR					
		ii)	-					
		any finite intersection of open sets in X is open.						
	b)	i)	If a convergent sequence in a metric space has infinitely many distinct points, prove that its limit is a limit point of the set of points of the sequence					
		ii)	that its limit is a limit point of the set of points of the sequence. State and prove Cantor's Intersection Theorem.					
		iii)	If $\{A_n\}$ is a sequence of nowhere dense sets in a complete metric space X, show that					
				6+4)				
		OR						
		iv)	Prove that the set $C(X, ;)$ of all bounded continuous real functions defined on a					
			metric space X is a real Banach space with respect to pointwise addition and scalar					
			multiplication and the norm defined by $ f = \sup f(x) $.					
2)	a)	i)	If a metric space X is second countable, show that it is separable.					
	OR ii) Define a topology on a non-empty set X with an example. Let X be a topological							
		11)	Define a topology on a non-empty set X with an example. Let X be a topological space and A be an arbitrary subset of X. Show that $\overline{A} = \{x \mid ach neighbourhood\}$					
		• `	of x intersects A }. (5)))				
	b)	i)	Show that any closed subspace of a compact space is compact.					
		ii)	Give an example to show that a proper subspace of a compact space need n closed.	lot be				
		iii)	Prove that any continuous image of a compact space is compact. (6+3+	+6)				
			OR					
		iv)	A topological space is compact, if every subbasic open cover has a finite sub- - Prove					
3)	a)	i)	State and prove Tychonoff's Theorem.	(15)				
0))	-)	OR					
		ii)	Show that a metric space is compact \Leftrightarrow it is complete and totally bounded.	(5)				
	b)	i)	Prove that in a sequentially compact space, every open cover has a Lebesque number.					
		ii)	Show that every sequentially compact metric space is totally bounded. (1 OR	0+5)				
		iii)	State and prove Ascoli's Theorem.	(15)				

4)	a)	i)	Show that every subspace of a Hausdorff space is also a Hausdorff.		
			OR	(5)	
		ii)	Prove that every compact Hausdorff Space is normal.	(5)	
	b)	i)	Let X be a T ₁ -space. Show that X is normal \Leftrightarrow each neighbourhood of a cl F contains the closure of some neighbourhood of F.	osed set	
		ii)	State and prove Uryshon's lemma. OR		
		iii)	If X is a second countable normal space, show that there exists a homeomorp	hism f	
		,	of X onto a subspace of R^{∞} .	(15)	
5)	a)	i)	Prove that any continuous image of a connected space is connected OR		
		ii)	Show that the components of a totally disconnected space are its points.	(5)	
	b)	i)	Let X be a topological space and A be a connected subspace of X . If B is a subspace		
			of X such that $A \subseteq B \subseteq \overline{A}$, then show that B is connected.		
		ii)	 If X is an arbitrary topological space, then prove the following: 1) each point in X is contained in exactly one component of X; 2) each connected subspace of X is contained in a component of X; 3) a connected subspace of X which is both open and closed is a component of 	f X.	
				(3+12)	
			OR		
		iii)	State and prove the Weierstrass Approximation Theorem.	(15)	
